Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hossein Aghabozorg,* Ali Akbari Saei and Farshid Ramezanipour

Department of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran

Correspondence e-mail:
aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.052$
$w R$ factor $=0.167$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Diaminopyridinium pyridinium-2,6-dicarboxylate: a redetermination

The crystal structure of the title compound, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}^{-}$or $(\text {pydaH })^{+}(\text {pydcH })^{-}$(pyda is $2,6-$ diaminopyridine and pydcH_{2} is pyridine-2,6-dicarboxylic acid), shows both intra- and intermolecular proton transfers from carboxyl groups to the ring N atoms of (pydc) ${ }^{2-}$ and pyda. This determination corrects a previous report which formulated this compound as $\left(\mathrm{pydaH}_{2}\right)^{2+}(\mathrm{pydc})^{2-}$ [Moghimi, Ranjbar, Aghabozorg, Jalali, Shamsipur, Yap \& Rahbarnoohi (2002), J. Mol. Struct. 605, 133-149]. Ion-pairing, hydrogenbonding and $\pi-\pi$ stacking interactions link the fragments to form a self-associated system.

Comment

Hydrogen-bonding interactions between carboxylic acids and 2-aminopyridine (pyda) units have been investigated in a recent publication (Bensemann et al., 2003). We have previously reported some self-associated proton-transfer systems, using pyridine-2,6-dicarboxylic acid $\left(\mathrm{pydcH}_{2}\right)$ and 4-hydroxypyridine-2,6-dicarboxylic acid (hypydcH H_{2}) as proton donors. The proton acceptors in these studies were creatinine (creat) and guanidine (G), which formed the proton-transfer compounds $\quad(c r e a t H)(p y d c H) \cdot \mathrm{H}_{2} \mathrm{O}, \quad(\mathrm{GH})_{2}($ pydc $)$ and (GH)(hypydcH) (Moghimi, Sharif \& Aghabozorg, 2004; Moghimi, Sheshmani et al., 2004; Moghimi et al., 2005). Hydrogen-bonding and ion-pairing interactions are observed in all of these compounds.

(I)

Here, we report the structure of a self-associated system, $(\mathrm{pydaH})^{+}(\mathrm{pydcH})^{-}$, (I). This determination corrects a previous report which formulated this compound as $\left(\text { pydaH }_{2}\right)^{2+}(\text { pydc })^{2-}$, (II) (Moghimi, Ranjbar, Aghabozorg, Jalali, Shamsipur, Yap \& Rahbarnoohi, 2002). In (II), the protons were assigned to the amino groups of the cation, whereas in (I), they are assigned to the ring N atoms of both cation and anion. In (II), there was a short $\mathrm{N} \cdots \mathrm{O}$ contact [2.770 (5) \AA] between the ring N atom of the cation and a

Received 12 May 2005
Accepted 31 August 2005
Online 14 September 2005

Figure 1
The structure of the title compound, showing the atom-numbering scheme and with displacement ellipsoids at the 50% probability level.
carboxyl O atom; this interaction corresponds to the hydrogen bond $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 4[D \cdots A=2.788$ (3) \AA; Table 2] in (I).

Several metal complexes contain the (pydaH) ${ }^{+}$counterion, in which the proton is connected to the ring N atom (Aghabozorg et al., 2005; Moghimi, Shokrollahi et al., 2004; Ranjbar et al., 2003a,b; Moghimi, Ranjbar, Aghabozorg, Jalali, Shamsipur \& Chadha, 2002a,b; Ranjbar, Moghimi et al., 2002; Ranjbar, Taghavipur et al., 2002; Ranjbar et al., 2001). Another ionic compound, (pydaH) $)^{+}\left(\mathrm{NO}_{3}\right)^{-}$, also has the proton linked to the ring N atom (Aghabozorg et al., 2005). Furthermore, the anionic fragment $(\mathrm{pydcH})^{-}$has been reported as the predominant form of dipicolinic acid at pH 3.5 (Peral \& Gallego, 2000). These findings support our contention that the structure reported here is correct and that the structure of (II) is incorrect.

The structure of (I) shows both intra- and intermolecular proton transfers. Ion-pairing and hydrogen-bonding interactions link the components of the system. A number of N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with $D \cdots A$ distances ranging from 2.598 (3) to 3.128 (3) \AA (Table 2) are observed in the crystal structure, producing a three-dimensional network (Fig. 2) There is evidence of $\pi-\pi$ stacking between parallel planes of (pydaH) ${ }^{+}$fragments, with an interplanar distance of about 3.3 Å.

Experimental

The title compound was prepared by the reaction of 2,6 -diaminopyridine and pyridine-2,6-dicarboxylic acid in a 1:1 molar ratio in water. Light-yellow crystals of (I) were obtained by slow concentration of the solution at room temperature.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{3}{ }^{+} . \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}{ }^{-} \\
& M_{r}=276.26 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=10.282(2) \AA \\
& b=10.417(2) \AA \\
& c=11.765(2) \AA \\
& \beta=97.42(3)^{\circ} \\
& V=1249.6(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.468 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=11-12^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$

Figure 2
The crystal packing of the title compound; hydrogen bonds are indicated by dashed lines.

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 5 / 3 \theta$ scans
Absorption correction: none 2919 measured reflections 2692 independent reflections 1596 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.059$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.167$
$S=1.05$
2692 reflections
181 parameters
H-atom parameters constrained

$$
\theta_{\max }=27.0^{\circ}
$$

$$
h=0 \rightarrow 13
$$

$k=-1 \rightarrow 13$
$l=-15 \rightarrow 14$
2 standard reflections every 100 reflections intensity decay: 3%

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N1-C1			
N1-C5	$1.354(3)$	O3-C12	$1.250(3)$
N2-C1	$1.361(3)$	O4-C12	$1.226(3)$
N3-C5	$1.343(3)$	N4-C6	$1.326(3)$
O1-C11	$1.320(3)$	N4-C10	$1.331(3)$
O2-C11	$1.247(3)$	C6-C11	$1.536(3)$
	$1.215(3)$	C10-C12	$1.508(3)$
C1-N1-C5			
N2-C1-N1	$124.2(2)$	O2-C11-O1	$131.1(2)$
N3-C5-N1	$116.3(2)$	O2-C11-C6	$116.2(2)$
C6-N4-C10	$117.0(2)$	O1-C11-C6	$112.6(2)$
N4-C6-C11	$125.27(19)$	O4-C12-O3	$128.2(2)$
N4-C10-C12	$115.35(19)$	O4-C12-C10	$117.4(2)$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.09 P)^{2}\right. \\
& \quad+0.2 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N $\cdots \mathrm{O} 4$	0.85	1.97	$2.788(3)$	164
N3-H3N $A \cdots \mathrm{O} 3$	0.94	1.97	$2.888(3)$	167
N3-H3N $B \cdots$ O $^{\mathrm{i}}$	0.87	2.01	$2.851(3)$	163
N4-H4N $\cdots \mathrm{O} 1$	0.92	2.19	$2.589(3)$	106
N4-H4N \cdots O3	0.92	2.20	$2.598(3)$	106
N2-H2N $A \cdots$ O4	0.89	2.41	$3.128(3)$	138
N2-H2N $B \cdots 2^{\text {ii }}$	0.86	1.99	$2.838(3)$	170

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x-1,-y-\frac{1}{2}, z-\frac{1}{2}$.

H atoms attached to N atoms were located in a difference Fourier map and refined in the riding model with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$. All other H atoms were positioned geometrically and constrained to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1984); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1996); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1998); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

The authors are grateful to the Teacher Training University for support of this work.

References

Aghabozorg, H., Moghimi, A., Manteghi, F. \& Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909-913.
Bensemann, I., Gdaniec, M., Lakomecka, K., Milewska, M. J. \& Polonski, T. (2003). Org. Biomol. Chem. 1, 1425-1434.

Enraf-Nonius (1984). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Harms, K. (1996). XCAD4. University of Marburg, Germany.
Moghimi, A., Aghabozorg, H., Soleimannejad, J. \& Ramezanipour, F. (2005). Acta Cryst. E61, o442-0444.
Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. \& Chadha, R. K. (2002a). Can. J. Chem. 80, 1687-1696.
Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. \& Chadha, R. K. (2002b). J. Chem. Res. pp. 1047-1065.
Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M., Yap, G. P. A. \& Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133-149.

Moghimi, A., Sharif, M. A. \& Aghabozorg, H. (2004). Acta Cryst. E60, o1790o1792.
Moghimi, A., Sheshmani, S., Shokrollahi, A., Aghabozorg, H., Shamsipur, M., Kickellbick, G., Carla Aragoni, M. \& Lippolis, V. (2004). Z. Anorg. Allg. Chem. 630, 617-624.
Moghimi, A., Shokrollahi, A., Shamsipur, M., Aghabozorg, H., \& Ranjbar, M. (2004). J. Mol. Struct. 701, 49-56.

Peral, F. \& Gallego, E. (2000). Spectrochim. Acta A, 56, 2149-2155.
Ranjbar, M., Aghabozorg, H. \& Moghimi, A. (2003a). Z. Kristallogr. New Cryst. Struct. 218, 75-76.
Ranjbar, M., Aghabozorg, H. \& Moghimi, A. (2003b). Z. Kristallogr. New Cryst. Struct. 218, 432-434.
Ranjbar, M., Aghabozorg, H., Moghimi, A. \& Yanovsky, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 626-628.
Ranjbar, M., Moghimi, A., Aghabozorg, H. \& Yap, G. P. A. (2002). Anal. Sci. 18, 219-220.
Ranjbar, M., Taghavipur, M., Aghabozorg, H., Moghimi, A., Jalali, F. \& Shamsipur, M. (2002). Polish J. Chem. 76, 785-794.
Sheldrick, G. M. (1998). SHELXTL-Plus. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

